Лабораторная работа «ИЗУЧЕНИЕ УПРУГИХ СВОЙСТВ МАТЕРИАЛОВ» Цель работы: Определение модуля упругости материалов.

<u>Принадлежности:</u> Установка для изучения упругих свойств материалов, образцы, линейка, микрометр, набор грузов.

Мерой взаимодействия тел является сила. Действие окружающих тел на рассматриваемое характеризуется внешними силами, которые могут распределяться по объему и по поверхности тела (силы всемирного тяготения, магнитное взаимодействие). Совокупность действующих на тело сил называется нагрузками. Действие нагрузок может вызвать деформацию тел.

<u>Деформация</u> – это изменение взаимного расположения точек тела, которое приводит к изменению его формы и размеров.

Любые сложные деформации могут быть представлены совокупностью небольшого числа основных видов: растяжения, сжатия, кручения, сдвига, изгиба. Если после прекращения действия нагрузки деформация исчезает, то она называется упругой. Если тело не восстанавливает форму и объем после прекращения внешнего воздействия, то ее называют *пластической*.

При деформации расстояние между атомами (молекулами) изменяется. Это приводит к возникновению внутренних сил, стремящихся вернуть частицы в первоначальное положение. Внутренние силы, возникающие при действии нагрузок это силы упругости. Определяют внутренние силы методом сечений.

Мерой внутренних сил, возникающих при деформации материала является механическое напряжение. При деформации сжатия и растяжения напряжение можно выразить как отношение силы к площади поперечного сечения.

$$\sigma = \frac{F}{S}$$
; $\left[\sigma\right] = 1 \frac{H}{M^2} = 1 \Pi a$

Величины, характеризующие деформацию:

 $\ell_1 - \ell = \Delta \ell$ - абсолютное удлинение (деформация)

$$\frac{\Delta \ell}{\ell}$$
 = ϵ - относительное удлинение $\frac{\Delta \ell}{\ell}$ ·100%

Закон упругой деформации: относительная деформация прямо пропорциональна приложено силе и обратно пропорциональна площади сечения.

$$\frac{\Delta \ell}{\ell} = \frac{1}{E} \cdot \frac{F}{S} \quad (1)$$

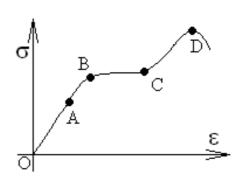
Получен экспериментально английским физиком Робертом Гуком.

Из (1) выразим $\frac{F}{S} = E \frac{\Delta \ell}{\ell}$, то есть для упругих деформаций $\sigma = E \cdot \epsilon$, т.е. механическое напряжение пропорционально относительному удлинению.

Е – модуль упругости или модуль Юнга

 $\sigma = E \cdot \frac{\Delta \ell}{\ell}$, если $\Delta \ell = \ell$, $E = \sigma$, следовательно, модуль Юнга численно равен

механическому напряжению, возникающему в образце при увеличении его длины вдвое (если бы закон Гука выполнялся до столь больших удлинений)


$$[E] = 1\Pi a$$

Материал	Е '10 ⁷ Па
Стекло	4900-7800
Алюминий	6300-7000
Гетинакс	1000-1700
Текстолит	600-1000
Кожа	0,0013
Кость	1000
Плексиглас	320
Коллаген	100

 $\sigma = f(\epsilon)$ является характеристикой механических свойств Зависимость твердого тела.

Пример: диаграмма растяжения

- ОА участок упругой деформации, выполняется закон Гука
- ВС участок текучести материала
- σ_{vm} наибольшее механическое напряжение, котором деформация сохраняет упругий характер – предел упругости;
- σ_{T} напряжение, при котором происходит текучесть материала – п... удлинения происходит без увеличения нагрузки – предел текучести.

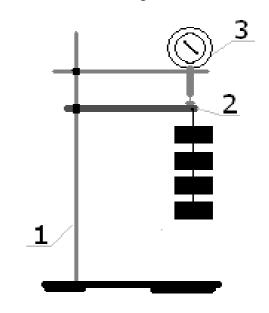
 σ_{np} - напряжение, при котором происходит разрушение образца – предел прочности Целью механических испытаний твердых материалов является измерение деформаций образцов материалов при нагрузке и определение упруго- прочностных свойств материалов, среди которых – модуль упругости. Существуют различные методы его определения. В данной работе модуль упругости определяется по

Если на один конец упругого стержня, закрепленного в штативе с другой стороны действует сила F, то стержень изгибается. При этом верхние слои стержня растягиваются, нижние сжимаются, а средний слой, который называют нейтральным, сохранит длину и только претерпит искривление.

Перемещение λ, которое получил нагруженный конец стержня называется

стрелой прогиба. Она тем больше, чем больше нагрузка и зависит от формы и размеров стержня, от модуля Юнга материала стержня.

$$\lambda = \frac{4FL^3}{a^3bE} (2)$$


F – приложенная сила

L- длина стержня

деформации изгиба.

b - ширина стержня

а- толщина стержня

Описание установки.

- 1 Штатив
- 2. Образец
- 3. Индикатор прогиба

Порядок выполнения работы.

- 1. Измерьте микрометром ширину b и толщину a образца. Результаты в метрах занести в таблицу 3 в виде мантиссы и порядка числа (пример: a = 5,36 мм, в таблицу записываем $5,36\cdot10^{-3}$ м).
- 2. Ознакомьтесь с установкой. Запишите цену деления шкалы индикатора $c = \dots$ мм и переведите ее в метры

$$c = \dots$$
 $MM = \dots$ M

Показания с индикатора снимаются следующим образом:

количество делений n * цену деления в метрах

$$n \times c(M)$$
.

при этом n записываем в тело таблицы, а порядок числа (10^{-5}) находится в «шапке» таблицы.

- 3. Закрепите образец в держатель штатива так, чтобы точка подвеса груза находилась точно под наконечником индикатора. Измерьте длину L образца (длина образца измеряется как расстояние между точкой закрепления и точкой подвешивания грузов). Результаты занести в таблицу 3.
- 4. Запишите показания индикатора n_0 в таблицу 2 выраженные в метрах в виде мантиссы и порядка числа (пример 0.77 мм = 77.10^{-5} м).
- 5. Подвесьте к образцу один груз и снимите показания индикатора п. Измерения с одним грузом произвести 3 раза, каждый раз снимая его, и измеряя n₀ перед каждым опытом. Результаты записать в таблицу 2 в метрах в виде мантиссы и порядка числа.
- 6. Аналогичные измерения проделайте с двумя, тремя, четырьмя грузами и заполните таблицу 2.

Таблица 2

$N_{\underline{0}}$	n ₀ , M	F, H	n, M	λ, м	$\overline{\lambda}$, M
1.					
2.					
3.					
1.					
2.					
3.					
1.					
2.					
3.					
1.					· · · · · · · · · · · · · · · · · · ·
2.					
3.					

- 7. Вычислите стрелы прогиба λ , по формуле $\lambda = |n n_0|$, соответствующие всем нагрузкам и среднее значение стрелы прогиба $\overline{\lambda}$ для каждой нагрузки.
- 8. Рассчитайте силу, под действием которой происходила деформация образца

$$F = m \cdot g$$
,

где g - ускорение свободного падения, $g = 9.8 \text{ m/c}^2$;

 $m=m_1 \times$ количество грузов ($m_1=50$ г = 0,05кг – масса одного груза).

9. Постройте график зависимости средней стрелы прогиба от нагрузки $\overline{\lambda} = f(F)$ и получите уравнение линейной регрессии, связывающее эти величины, используя компьютер, программу Excel.

Для этого в столбец A введите четыре значения аргумента «х» - силы, а в столбец В — значения зависимой переменной «у» только мантиссы средней стрелы прогиба для каждой нагрузки. После выполнения всех команд, необходимых для построения графика, он выводится на экран.

Для получения линии регрессии и уравнения указатель мыши наведите на линию графика, и, вызвав контекстное меню (правая клавиша мыши), выберите команду «Добавить линию тренда». В появившемся запросе на вкладке «Тип» нужно выбрать построение линии тренда линейную, на вкладке «Параметры» установить флажок «Показывать уравнение на диаграмме».

Запишите в таблицу 3 появившееся уравнение линейной регрессии, а так же угловой коэффициент «k» из уравнения, умножив его на порядок числа средней стрелы прогиба. Полученный коэффициент k равен тангенсу наклона получившейся прямой, т.е.

$$k = tg \; \alpha = \frac{\lambda}{F}$$

10. Вычислите модуль упругости, подставляя линейные размеры образца и угловой коэффициент «k». Для этого из формулы (2) необходимо выразить

$$\frac{\lambda}{F} = \frac{4 L^3}{a^3 b} \cdot \frac{1}{E}$$
, отсюда $E = \frac{4 L^3}{a^3 b \, tg \, \alpha} = \frac{4 L^3}{a^3 b \, k}$.

Подставьте размеры образца и угловой коэффициент «к» в последнее выражение и рассчитайте модуль Юнга. Запишите значения модуля упругости в таблицу 3.

11. Полученный результат сравните со справочными данными модуля Юнга (таблица 1) и сделайте вывод.

Уравнение линейной регрессии	y=
Угловой коэффициент	k=
Длина стержня	L=
Ширина стержня	b=
толщина стержня	a=
Модуль Юнга	E=

Контрольные вопросы:

- 1. Что такое деформация, виды деформации.
- 2. Внешние и внутренние силы. Метод определения внутренних сил.
- 3. Природа сил упругости.
- 4. Законы упругой деформации.
- 5. Модуль упругости, его физический смысл.
- 6. Моделирование упругих, вязких и вязко- упругих свойств.

Вопросы для самоконтроля:

- 1. Что такое абсолютное удлинение, в каких единицах измеряется?
- 2. Что такое относительное удлинение, в каких единицах измеряется?
- 3. Чему равен коэффициент жесткости, в каких единицах измеряется?
- 4. Что такое механическое напряжение, в каких единицах измеряется?
- 5. Начертить диаграмму растяжения и проанализировать ее.
- 6. Назвать модель упругого тела.
- 7. Назвать модель вязкого тела.
- 8. Назвать модель вязко-упругого тела.
- 9. Какие свойства тел изучаются на этих моделях?
- 10. Математическое описание моделей.